Экономическая эффективность применения преобразователя частоты Использование преобразователей частоты в системах регулирования давления и расхода

Преобразователи частоты (ПЧ), в том числе Lenze-ACTech, возможно использовать в промышленных системах, где требуется поддержание на заданном уровне некоторого технологического параметра. Этот параметр измеряется соответствующим датчиком, выходной сигнал которого подается на специальный вход преобразователя.

Часто решение этой задачи используется в системах, где требуется поддержать давление в магистральном трубопроводе. Электродвигатель насоса в этом случае питают от частотного преобразователя, задающего такую скорость вращения насоса, при которой давление в магистрали стабилизируется.

Срок окупаемости затрат после установки преобразователя в систему, как правило, меньше полугода.

Экономическая выгода достигается за счет существенного снижения потребления электроэнергии по сравнению с системой, где давление регулируется, например, задвижкой или перепускным вентилем.

Ниже приведены сравнительные характеристики потребления электроэнергии системой, работающей как с ПЧ, так и с использованием «обычных» методов регулировки:

- регулировка расхода воздуха с помощью выходной задвижки вентилятора (рис.1);
- регулировка расхода воды с помощью циклической работы насоса в режиме «OFF-ON» (рис.2);
- регулировка расхода воды с помощью перепускного (рециркуляционного) вентиля (рис.3).

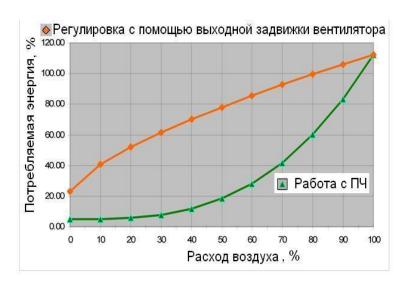


Рис.1

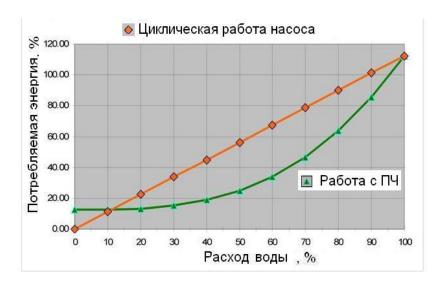


Рис.2

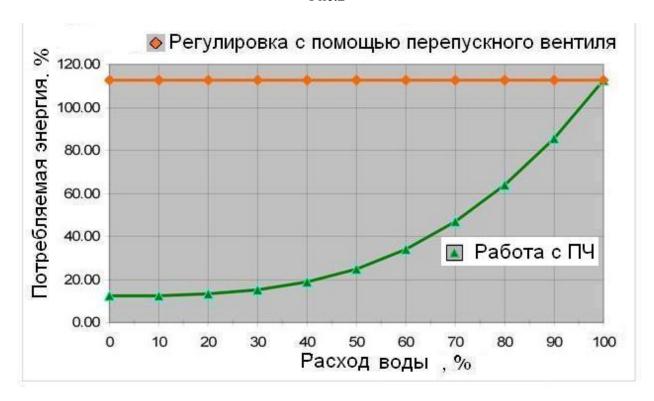


Рис. 3.

Как видно из графиков на рисунках 1, 2 и 3, наибольшая экономическая эффективность использования ПЧ достигается, если система вентиляции или водоснабжения большую часть времени недогружена. Такая периодическая недогрузка свойственна этим системам. Например, в суточной кривой расхода воды, как правило, имеются два явных максимума – утром и вечером. Исходя из этих максимумов, выбирается мощность магистрального насоса. В остальное время суток насос работает с небольшой нагрузкой. Именно в это время ПЧ позволяет снизить потребление электроэнергии.

В номенклатуре изделий, предлагаемых нашим покупателям, все ПЧ имеют встроенный регулятор, позволяющий использовать этот преобразователь для автоматического поддержания давления воды или расхода воздуха на требуемом уровне. Также в продаже всегда имеются датчики давления воды на 6 и 10 бар. В таблице 1 приведены некоторые характеристики ПЧ в рассматриваемых системах.

Таблица 1.

Тип исполь- зуемых преобразо ва-телей	Степень защиты корпуса преобразо ва-теля	Диапазон мощностей трехфазных двигателей		Возможност ь формирован ия уставки	Наличие	Тип интегрир	Возможност ь индикации регулируем	Возможн ые действия
		Однофазн ое питание ПЧ 220В	Трехфазн ое питание ПЧ 380 В	(задания) через дополнител ь-ный аналоговый вход	«спящег о» режима	о- ванного регулято ра	ого давления в единицах, удобных для пользовател я	при обрыве датчика обратной связи
SMD (ESMD)	IP20	0.25 2.2 кВт	0.37 22 кВт	нет	нет	ПИ	да	Останов
SMV (ESV)	IP31 IP65	.0.25 2.2 кВт	0.37 22 кВт 0.37 7.5 кВт	да	да	пид	да	Останов или выход на заданную скорость
INNOVER T (H3000)	IP20	0.75 2.2 кВт	0.4 315 кВт	да	да	пид	да	Выход на заданную скорость (прорабатывается)

При рассмотрении данного вопроса несколько слов скажем о целесообразности структуры систем, когда используется один преобразователь, подключаемый к нескольким электродвигателям. Причем поддерживает давление в системе один работающий двигатель, а остальные находятся в резерве или на регламентном обслуживании. Между преобразователем и двигателем в этом случае должен находиться шкаф коммутации, работающий по довольно сложному алгоритму, учитывающему различные блокировки, временные задержки включения и пр. По нашим расчетам коммерческая целесообразность использования такого шкафа коммутации наступает только в случае, если мощность используемых электродвигателей не меньше 30 кВт. Альтернативой использования шкафа коммутации может служить установка на каждый двигатель «своего» преобразователя частоты. Такая структура не только дешевле, но и обеспечивает возможность «горячего» резервирования в системе.

Отметим также возможность, а в некоторых случаях необходимость использования дросселей на силовых входе и выходе преобразователя.

Входной сетевой дроссель устанавливается, если существует необходимость защиты преобразователя от некачественного напряжения сети. Например, если существуют недопустимый перекос (более 2%) фазовых напряжений сети или рядом с преобразователем установлены другие, коммутируемые с помощью пускателей нагрузки или двигатели. Кроме того, при установке сетевого дросселя несколько уменьшается входной ток и снижается тепловая нагрузка на входные силовые элементы преобразователя. Установка сетевых дросселей обязательна, если используется преобразователь мощностью 30 кВт и выше или он работает в сельской местности.

Выходной моторный дроссель устанавливается в случае, если от преобразователя до двигателя больше 30 м, или существует вероятность коротких замыканий в нагрузке преобразователя. Кроме того, выходной дроссель уменьшает нагрузку на электродвигатель, делая его работу более надежной.

Установка сетевых и моторных дросселей в оговоренных выше случаях обеспечит Вам отсутствие «сюрпризов» в самый неподходящий для этого момент.

Шустов А. Б.

Документация:

- Карточка быстрого ввода в эксплуатацию регулятора давления (pdf)
- Преобразователь ESMD в системах регулирования давления (pdf)
- Преобразователь ESV в системах регулирования давления (pdf)